Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Database
Main subject
Language
Document Type
Year range
1.
Environ Sci Pollut Res Int ; 2022 Oct 05.
Article in English | MEDLINE | ID: covidwho-2250778

ABSTRACT

Human respiratory infections caused by a large variety of microbial pathogens are the most common diseases responsible for hospitalization, morbidity and mortality. Parachlamydia acanthamoebae, a Chlamydia-related bacterium, has been found to be potentially associated with these diseases. An early and accurate diagnosis of this pathogen could be useful to avoid the potential respiratory complications linked especially to COVID-19 patients and to set suitable outbreak control measures. A TaqMan-PCR assay was developed to detect and quantify Parachlamydia acanthamoebae in environmental and clinical samples from patients of all ages with COVID-19. The selected hydrolysis probe displayed no cross-reaction with the closely related Chlamydia or the other tested pathogens. This q-PCR achieved good reproducibility and repeatability with a detection limit of about 5 DNA copies per reaction. Using this q-PCR assay, Parachlamydia acanthamoebae was detected in 2/78 respiratory specimens and 9/47 water samples. Only one case (1.3%) of Parachlamydia acanthamoebae and SARS-COV-2 co-infection was noticed. To our knowledge, the combination of these two respiratory pathogens has not been described yet. This new TaqMan-PCR assay represents an efficient diagnostic tool to survey Parachlamydia acanthamoebae on a large-scale screening programs and also during outbreaks.

2.
Anal Biochem ; 667: 115080, 2023 04 15.
Article in English | MEDLINE | ID: covidwho-2227803

ABSTRACT

Parachlamydia acanthamoebae and Simkania negevensis, two Chlamydia-like bacteria, have been recently recognized as emerging human respiratory pathogens. The prevalence and frequency of these bacteria in the environment and among atypical pneumonia patients are still underestimated by classical cultures, immunohistochemistry and serology which are non-specific, long and tedious methods. This study aims to develop a new duplex probe-based q-PCR assay for the simultaneous detection and quantification of P. acanthamoebae and S. negevensis. The selected hydrolysis probes displayed no cross-reaction with the closely related Chlamydia or the other tested waterborne pathogens. The assay achieved a large dynamic range for quantification (from 5 × 106 to 5 DNA copies/reaction). Efficiencies of FAM and JOE label probes weren't affected when they were combined. They were close to 100%, indicating the linear amplification. The application of this diagnostic tool resulted in 9/47 (19%) and 4/47 (8.5%) positive water samples for P. acanthamoebae and S. negevensis, respectively. P. acanthamoebae was also covered from 2/78 (2.5%) respiratory specimens and only one case (1/200 = 0.5%) of P. acanthamoebae and SARS-CoV-2 co-infection was noticed. While S. negevensis wasn't detected in clinical samples, the developed duplex q-PCR was shown to be an accurate, highly sensitive, and robust diagnostic tool for the detection and quantification of P. acanthamoebae and S. negevensis.


Subject(s)
COVID-19 , Humans , SARS-CoV-2 , Polymerase Chain Reaction/methods , COVID-19 Testing
SELECTION OF CITATIONS
SEARCH DETAIL